江苏先导干燥科技有限公司欢迎您!
首页 > 新闻中心 > 行业新闻 > 喷雾干燥粘壁的解决方案-江苏先导干燥科技有限公司
喷雾干燥粘壁的解决方案-江苏先导干燥科技有限公司
来源:江苏先导   时间:2020.11.20   点击次数:


    喷雾干燥机


2.1.1 改良干燥塔的结构与材质:在塔体设计时,若塔径小于喷雾锥最大直径 ,就会在对着雾滴运动最大轨迹平面上产生严重的粘壁。为了防止物料粘壁,可以有意识地适当加大塔壁直径,使半干物料碰不到壁面就向下掉落。这个办法有缓解粘壁的作用,但塔径不宜过大,否则不仅增加设备材料费和设备占地面积,还会降低热风在塔内的运行速度,影响干燥质量。立式圆锥形喷雾干燥塔容易在锥体部位粘壁,采用立式圆柱体结构能够克服上述缺点。


喷雾干燥塔塔体多由不锈钢、碳钢或钢筋混凝土制成,这些材料均有亲水性,易被湿物料粘附而结疤。如在喷雾干燥塔易结疤的区域内衬接触角大于90℃的疏水性材料,特别是高分子材料,可有效地减少喷雾干燥塔结疤的机率,内衬材料的选择要根据喷雾干燥塔工作温度来确定,如果工作温度低于100℃,可选择聚丙烯、聚苯乙烯等作为内衬材料,而对于工作温度在100~200℃的情况,应选用聚四氟乙烯。采用高分子材料作为喷塔内衬,设计上要充分考虑内衬层与塔体热膨胀系数的差异。


2.1.2 合理选择雾化器:雾化器又称喷嘴 ,是喷雾干燥设备的关键部件 ,其结构的不同直接影响液体雾化分散效果,进而影响微粒的粒径和性能。膏状物料粘附性极强,不易分散,易于使已分散的物料重新粘结成团,导致来不及干燥而粘壁。同时膏状物料中的水份和物料的结合状态属毛细管水、渗透水、吸附水和结构水,故水份在物料中的传递阻力大,如不能设法将物料分散成很小的颗粒以减少传热传质阻力 ,干燥时间的延长也是造成粘壁的重要原因。汪建文等采用在一个喷嘴内实现一次物料三次气流的二内一外旋转混合的雾化器,便于拆卸安装,直径不超过 10 mm的杂物不会受堵,达到比较理想的雾化效果,避免膏状物料喷雾干燥的粘壁问题。


鉴于粘度高的物料难以雾化,王开润在研究中药桔梗浸膏喷雾干燥时,主张采用三流体式喷嘴代替二流体式喷嘴,并通过提高料液温度以降低其粘度、增大气液比等手段提高雾化效果,达到减轻粘壁的目的。采用四流式雾化喷嘴可使雾滴的比表面积增加10倍,提高雾滴尺寸分布均匀度,提高雾化效果,具有连续调节转速功能的变频离心雾化器非常适宜食用菌多糖喷雾干燥,可以根据多糖的品种、浓缩液的含固量调节转速,以改变雾滴大小,达果到少粘或不粘塔壁的效果。


2.1.3 雾化器的正确安装:气流式喷嘴和压力式喷嘴产生的标准喷雾图形是一个和喷嘴轴线对称的空心锥 ,雾滴应均匀分布在喷雾锥中。当气流式喷嘴的气体通道与液体通道轴心不重合,或压力式喷嘴孔不圆时,产生的雾锥就不对称了,雾锥的偏离将导致局部严重粘壁。


如果喷雾塔中只安装一个喷嘴,则喷嘴的轴线要安装在塔的中心线上,即二者重合。如果需要安装多个喷嘴,则各喷嘴雾矩间不能重叠,通过调节喷射角度使雾滴不要直接喷射到对面的壁上。喷嘴的振动也是产生粘壁的一个原因,对于旋转式雾化器,运转时特别要防止振动。


2.1.4 选用适宜的操作工艺条件:对于气流式喷雾干燥塔,操作工艺参数主要涉及干燥温度、进料速率和喷头压力。喷雾干燥塔温度分为进风口温度和出风口温度。提高进风口温度可以增大液滴的蒸发强度,使液滴在接触塔壁之前表面就已经固化,可有效地减少粘壁损失,提高产品收率。此外,温度对颗粒粒径有较大影响,温度较低时,溶液雾滴达到过饱和的时间延长,瞬间成核速度降低,成核数量减少,因此,所得微粒粒径增大,导致干燥时间延长。进风口温度维持不变时,提高出风口温度可以缩小进出口温度差,提高热空气在塔内的平均温度,加快干燥速率,有效防止粘塔现象。因此,在物料不失活和没有低熔点粘壁的前提下,适当提高干燥温度是有利的。


进料速率对干燥的影响主要体现在蒸发负荷和雾滴颗粒变化两个方面。一方面,随着进料速率的增加,蒸发负荷增加,当进风口温度不变时,出风口温度降低 ,从而使雾滴与空气之间的对数平均温度差Δtm变小,产品含湿量增加引起粘壁;另一方面,进料速率的增加引起雾滴颗粒变大,干燥所需时间τ与液滴直径d之间的关系可用下式表示:


τ=1.04×10-4d1.87   (1)


由式(1)可见,雾滴直径变大,所需干燥时间延长,物料粘壁就更容易发生。因此,进料速率应由小到大,逐渐控制在合理范围内。


在其它条件不变时,提高喷雾压力则有利于雾滴的细化,因为雾滴的直径与喷雾压力的平方根成反比。


d√p tgα/2 = 常数 (2)

式中:d-雾滴直径 ,m;

 p-喷雾压力, Pa;

 α-雾锥角 , rad。


雾滴直径变小可以加快蒸发的速度,缩短干燥的时间,从这个角度讲有利于避免物料粘壁。但另一方面,喷雾压力的升高可以提高雾滴的喷射初速度,引起射程的增加,使一些雾滴在尚未干燥前就粘贴在塔壁上。


综上所述,喷头压力也有一个合适范围,应根据物料性质、 干燥塔的特征参数合理设置。对于离心式喷雾干燥器,就应选择好旋转盘转速。


2.1.5 热风在塔内的运动状态:热风在塔内的运行状态直接影响粘壁状况。佛明义等在解决石油化工产品喷雾干燥粘壁问题时,采用了顺流风和夹带少量团粒的旋转风相结合的方法,当二者流量分别为 180m3/h和120m3/h时,即二者比值1.5时,塔壁冲刷干净,取得了满意效果。实践证明,在总的进塔热风量一定的情况下,用于保护层的风量与用于干燥的风量,两者的比例会影响雾滴的干燥效果。如果保护层的风量过大,反而使塔的粘壁增加,这是因为起干燥作用的风量减小,雾滴在没彻底干燥前与内壁接触而粘附。


采用多段气幕封壁法对解决乳品粘壁有较好的效果。该方法的原理是对常规干燥塔结构加以改造,采用自上而下直径逐渐增大的塔壁,并在每段上部沿周向开若干个小孔,在塔外增加一层直径不变的外壁,形成一个夹层。冷空气由风机引入夹层,并通过每段的周向孔射入塔内,射流沿垂直向下方向形成气幕。如果射流速度、空气流量适当,每段气幕可首尾相接。这就等于把塔内壁用气流封住,以防止半干物料粘附在塔壁上。这套方案在塔体结构上比普通干燥塔复杂些 ,增加了一定加工量。


引风量对粘壁有影响。由于喷雾干燥过程是在微负压下操作,雾滴能否达到干燥效果并及时抽走干燥物料取决于引风量。引风量适当增加能够提高喷雾干燥产率,但如果引风量过大,雾滴在塔内停留时间过短,雾滴就会产生半湿物料粘于塔的底部(即塔锥体);如果引风量过小,虽然雾滴在塔内停留时间延长,但不能把干燥物料及时抽走,雾滴会粘附于干燥物料表面,随热风旋转流粘于塔直筒壁上。